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Knitting ansatz and solutions to Yang–Baxter equation∗
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Republic of China
‡ Department of Physics, Xinjiang University, Urumuqi 830046, Xinjiang, People’s Republic of
China

Received 30 April 1996

Abstract. We suggest a new method, named theknitting ansatz, to generate solutions to the
Yang–Baxter equation with lower-dimensional representations of the braid group. To support our
ansatz, we work out an example of a new 16× 16 R-matrix constructed according to this idea,
with two 4×4 braid group representations of familiar 6-vertex type with differentq-parameters.

1. Introduction

A braid is one of the simplest kinds of knitting craft. In this letter, we will work
on the knitting of braid group representations which gives solutions of the Yang–Baxter
equation [1, 2]. Acurately, we suggest an ansatz to construct a solution of the Yang–Baxter
equation from two (or more) lower-dimensional braid group representations, i.e. theknitting
ansatz:

If S1 andS2 are both braid group representations, thenS = S1⊗S2 gives a solution of
the Yang–Baxter equation through a proper Yang–Baxterization approach (of which
a brief review is given in the text).

This knitting construction is an ansatz because the Yang–Baxterization approach we
apply is an ansatz (see the later section for a discussion). It can easily be seen that the
knitting procedure can be applied to more than two braid group representations,Si with
(i = 1, 2, . . . , N).

There are many schools of Yang–Baxterization approach [3–5], and the approach we
apply in this letter is a modified version [7] of the theory given by Wang, Ge and Xue
[6, 5].

A proper parametrization ofS will give a solution of the Yang–Baxter equation. But
generically, such solutions are trivial, in that they are simply tensor products of the solutions
of the Yang–Baxter equation that are parametrized separately. Later in this letter, we will
work out an example that gives a non-trivial solution. Actually, this non-trivial solution is
a new solution to the Yang–Baxter equation.

∗ This project is partially supported by Chinese Natural Science Foundation, Chinese Postdoctoral National Science
Foundation.
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2. A generalized approach of Yang–Baxterization

This section is devoted to a brief review of a Yang–Baxterization approach, developed by Ge
et al [5, 6], and generalized by one of the present authors in [7]. This approach provides a
method (more accurately, an ansatz), for the parametrization of a braid group representation
into a trigonometric solution of the Yang–Baxter equation.

The Yang–Baxter equation takes the form

R̂12(x)R̂23(xy)R̂12(y) = R̂23(y)R̂12(xy)R̂23(x) (1)

whereR̂12(x) = R̂(x) ⊗ 11 andR̂23(x) = 11 ⊗ R̂(x). Let S be a braid group representation
with m distinct eigenvaluesλi with i = 1, 2, . . . , m and let it obey a character equation

m∏
i=1

(S − λi) = 0 (2)

then the braid group representationS is expanded via the projectors

Pi =
∏
j 6=i

(S − λj )

(λi − λj )
(3)

i.e.

S =
m∑

i=1

λiPi . (4)

The trigonometric Yang–Baxterization gives the solutions of the Yang–Baxter equation
with a spectral decomposition of the following form:

R̂(x) =
m∑

i=1

3i(x)Pi (5)

where3i(x) are m functions to be determined, upon the requirement called the standard
initial condition:

R̂(1) ∝ 11 . (6)

Generally

3i(x) =
i−1∏
j=1

(
1 + x

λ̃j

λ̃j+1

)m−1∏
j=i

(
x + λ̃j

λ̃j+1

)
. (7)

Note thatλ̃i with i = 1, 2, . . . , m take distinct values in the set{λ1, λ1, . . . , λm}. In fact
this approach is an ansatz because it only guarantees thatR̂(x) in (5) satisfies the initial
condition (6), and a proper alignment of the eigenvalues is needed forR̂(x) to satisfy the
Yang–Baxter equation.

It is easy to see that whenx = 1

31(1) = 32(1) = · · · = 3m(1) =
m−1∏
j=1

(
1 + λ̃j

λ̃j+1

)
(8)

or

R̂(1) = 31(1) · 11 . (9)

We would like to stress that the above ansatz is not unique. Actually, it has been pointed
out in [7] that, under the initial condition, equation (5) can be generalized as

3i(x) =
i−1∏
j=1

(
1 + xmj

λ̃j

λ̃j+1

)m−1∏
j=i

(
xmj + λ̃j

λ̃j+1

)
mj ∈ Z . (10)



Letter to the Editor L415

A special case with three eigenvalues was discussed in [7]; here we are dealing with an
interesting case of four eigenvalues. For convenience in later discussions we give the
explicit form of (10) in this four-eigenvalues case:

31(x) = (λ1/λ2 + x)(λ2/λ3 + x2)(λ3/λ4 + x)

32(x) = (λ1x/λ2 + 1)(λ2/λ3 + x2)(λ3/λ4 + x)

33(x) = (λ1x/λ2 + 1)(λ2x
2/λ3 + 1)(λ3/λ4 + x)

34(x) = (λ1x/λ2 + 1)(λ2x
2/λ3 + 1)(λ3x/λ4 + 1)

R̂(x) = 31(x)P1 + 32(x)P2 + 33(x)P3 + 34(x)P4.

(11)

3. The knitting ansatz

Let R̂1 and R̂2 be the correspondingR-matrices Yang–Baxterized from the braid group
representationsS1 and S2, and letS be the direct product ofS1 and S2. Obviously S is
also a representation of a braid group. Yang–BaxterizingS, we can get at least one solution
which is the direct product of̂R1 and R̂2. R̂ of this kind is not meaningful to any solution
constructor and hence is called trivial. We will give a non-trivial example at the end of this
section.

3.1. Expressions forS1 andS2

Considering two representationsS1 andS2 of the braid group with different parameters such
that

S1 =


1 0 0 0

0 0 q1 0

0 q1 1 − q2
1 0

0 0 0 1

 S2 =


1 0 0 0

0 0 q2 0

0 q2 1 − q2
2 0

0 0 0 1


with eigenvalues 1, −q2

1 and 1, −q2
2, respectively, the tensor productS of S1 andS2 reads

S =



1 · · · · · · · · · · · · · · ·
· · · · q2 · · · · · · · · · · ·
· · · · · · · · q1 · · · · · · ·
· · · · · · · · · · · · q12 · · ·
· q2 · · q3 · · · · · · · · · · ·
· · · · · 1 · · · · · · · · · ·
· · · · · · · · · q12 · · q13 · · ·
· · · · · · · · · · · · · q1 · ·
· · q1 · · · · · q4 · · · · · · ·
· · · · · · q12 · · · · · q24 · · ·
· · · · · · · · · · 1 · · · · ·
· · · · · · · · · · · · · · q2 ·
· · · q12 · · q13 · · q24 · · q34 · · ·
· · · · · · · q1 · · · · · q4 · ·
· · · · · · · · · · · q2 · · q3 ·
· · · · · · · · · · · · · · · 1



(12)
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whereq3 = 1 − q2
2, q4 = 1 − q2

1, q12 = q1q2, q13 = q1q3, q24 = q2q4 and q34 = q3q4.
Obviously the set of eigenvalues ofS 1, −q2

1, −q2
2 and q2

1q2
2 is the same as the product

set of that ofS1 andS2.

3.2. R̂1 and R̂2

BaxterizingS1 andS2, we get twoR-matricesR̂1(x) andR̂2(x) taking the following forms:

R̂1(x) =


xq2

1 − 1 0 0 0

0 x(q2
1 − 1) q1(x − 1) 0

0 q1(x − 1) q2
1 − 1 0

0 0 0 q2
1x − 1


and

R̂2(x) =


x2q2

2 − 1 0 0 0

0 x2(q2
2 − 1) q2(x

2 − 1) 0

0 q2(x
2 − 1) q2

2 − 1 0

0 0 0 q2
2x2 − 1


with eigenvaluesq2

1 − x, xq2
1 − 1 andq2

2 − x2, x2q2
1 − 1, respectively.

In fact R̂2 can take the same form aŝR1. We select this form forR̂2(x) only for later
use.

The direct productR̂⊗(x) of R̂1(x) and R̂2(x) is symmetric and the non-zero elements
are

R̂⊗1 1 = R̂⊗6 6 = R̂⊗11 11 = R̂⊗16 16 = (x2q2
2 − 1)(xq2

1 − 1)

R̂⊗2 2 = R̂⊗12 12 = (xq2
1 − 1)(q2

2 − 1)x2

R̂⊗2 5 = R̂⊗12 15 = (xq2
1 − 1)(x2 − 1)q2

R̂⊗3 3 = R̂⊗8 8 = (x2q2
2 − 1)(q2

1 − 1)x

R̂⊗3 9 = R̂⊗8 14 = (x2q2
2 − 1)(x − 1)q1

R̂⊗4 4 = (q2
2 − 1)(q2

1 − 1)x3

R̂⊗4 7 = (x2 − 1)(q2
1 − 1)xq2

R̂⊗4 10 = (x − 1)(q2
2 − 1)x2q1

R̂⊗4 13 = R̂⊗7 10 = (x + 1)(x − 1)2q2q1

R̂⊗5 5 = R̂⊗15 15 = (xq2
1 − 1)(q2

2 − 1)

R̂⊗7 7 = (q2
2 − 1)(q2

1 − 1)x

R̂⊗7 13 = (x − 1)(q2
2 − 1)q1

R̂⊗9 9 = R̂⊗14 14 = (x2q2
2 − 1)(q2

1 − 1)

R̂⊗10 10 = (q2
2 − 1)(q2

1 − 1)x2

R̂⊗10 13 = (x2 − 1)(q2
1 − 1)q2

R̂⊗13 13 = (q2
2 − 1)(q2

1 − 1)

and the set of its eigenvalues is{
(xq2

1 − 1)(x2q2
2 − 1), −(x2q2

2 − 1)(x − q2
1), (x − q2

1)(x2 − q2
2), −(xq2

1 − 1)(x2 − q2
2)

}
(13)
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which is the product set of that of̂R1 and R̂2. This procedure is depicted in figure 1.

- -
Yang–Baxterization ⊗

S1, S2 R̂1(x), R̂2(x) R̂⊗(x)

Figure 1. Yang–Baxterization and then tensor production.

3.3. A new solution

As an example, we now Yang–BaxterizeS using (11). In general, there are 24 possible
cases to get the solutions of the Yang–Baxter equation. If we denote the permutation of
these four eigenvalues 1, −q2

1, −q2
2, q2

1q2
2 as 1234, then for the following eight cases with

permutaions 1243, 1423, 2134, 2314, 3241, 3421, 4132 and 4312 we get the solutions of
the Yang–Baxter equation. There are only two independent solutions and one of them as
expected is the same aŝR⊗, and another denoted bŷR(x) is a new solution. This procedure
is depicted in figure 2.

- -
⊗ Yang–Baxterization

S1, S2 S1 ⊗ S2 R̂(x)

Figure 2. Tensor production and then Yang–Baxterization.

R̂2 is symmetric with the non-zero elements

R̂1 1 = R̂6 6 = R̂11 11 = R̂16 16 = (xq2
2 − 1)(x2q2

1 − 1)

R̂2 2 = R̂12 12 = (x2q2
1 − 1)(q2

2 − 1)x

R̂2 5 = R̂12 15 = (x2q2
1 − 1)(x − 1)q2

R̂3 3 = R̂8 8 = (xq2
2 − 1)(q2

1 − 1)x2

R̂3 9 = R̂8 14 = (xq2
2 − 1)(x2 − 1)q1

R̂4 4 = (q2
2 − 1)(q2

1 − 1)x3

R̂4 7 = (x − 1)(q2
1 − 1)x2q2

R̂4 10 = (x2 − 1)(q2
2 − 1)xq1

R̂4 13 = R̂7 10 = (x + 1)(x − 1)2q2q1

R̂5 5 = R̂15 15 = (x2q2
1 − 1)(q2

2 − 1)

R̂7 7 = (q2
2 − 1)(q2

1 − 1)x2

R̂7 13 = (x2 − 1)(q2
2 − 1)q1

R̂9 9 = R̂14 14 = (xq2
2 − 1)(q2

1 − 1)

R̂10 10 = (q2
2 − 1)(q2

1 − 1)x

R̂10 13 = (x − 1)(q2
1 − 1)q2

R̂13 13 = (q2
2 − 1)(q2

1 − 1)

and four eigenvalues(xq2
1 − 1)(xq2

2 − 1)(x2 − q2
2), −(xq2

1 − 1)(x − q2
2)(x2 − q2

2),
(x − q2

1)(x − q2
2)(x2 − q2

2) and−(xq2
2 − 1)(x − q2

1)(x − q2
2).
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4. Discussions

It should be stressed here that the operations of tensor-production and Yang–Baxterization
are non-commutative. This fact is demonstrated in figure 3.

���������:

XXXXXXXXz

-

-

⊗ Yang–Baxterization

Yang–Baxterization
⊗

S1, S2

S1 ⊗ S1

R̂1(x), R̂2(x)

set6 of R̂(x)

R̂⊗(x)

∪

Figure 3. Non-commutativity of the two operations.

The set6 is formed by the solutions obtained by parametrization of the tensored braid
group representationsS1 andS2, and it contains the solution̂R1(x) ⊗ R̂2(x) as a member.
The latter is trivial and it states the fact that a tensor product of two solutions of the Yang–
Baxter equation is still a solution of the Yang–Baxter equation. As6 contains a trivial
solution in any case,6 must be non-empty.

In fact, the equivalence of̂R⊗(x) andR̂1(x) ⊗ R̂2(x), and the difference between̂R(x)

andR̂1(x)⊗ R̂2(x) can easily be verified and proved by checking their eigenvalues. The set
of eigenvalues ofR̂⊗(x) is a product set of the eigenvalue set of solutionsR̂1(x), R̂2(x),
while the eigenvalue set of solution̂R(x) has nothing to do with the eigenvalue set ofR̂1(x)

and R̂2(x).
By analysing the relationship between the eigenvalue sets, one can easily recognize

whether the solutions generated by the knitting ansatz are trivial or not. Generically, if the
ansatz generates more than one independent solutions, there must be non-trivial solution(s).

Similarly, by comparing the eigenvalues ofR̂(x) and known 16× 16 R-matrices, we
learn that ourR-matrix is new.

Finally, we emphasize that, though we applied the knitting ansatz to two braid group
representations of the same dimension, it is not a requirement that the dimensions must be
the same.
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